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AbstracL An expresrion for the static polarizability of a system of electrons moving 
in an external potential IS obtained m lerms of occupied wavefunclions of a single- 
particle Hamnltonnan. ?he formalism 1s exact within the density functional theory. For 
a single electron in an external potential the polamability is expressed in terms of the 
gmund-state charge density. 

1. Introduction 

In linear response theory the static polarizability, x(r,r') ,  determines the response 
of the charge density of a system of electrons to a static external perturbation, 
and hence x describes the screening properties of the electrons. In the Adler- 
Wieser formulation [I] of the random phase approximation (RPA), the evaluation 
of the polarizability requires an accurate set of eigenvalues and eigenstates, both 
for the occupied states as well as the empty states. An analytic expression for the 
RPA polarizability of the homogeneous electron gas is known, but the best that can 
usually be done for an inhomogeneous system is to express the independent-particle 
polarizability in terms of an infinite sum over products of occupied and empty states. 
It is straightforward to formally include exchangecorrelation effects [2] and hence to 
go beyond the RPA within density functional theory (DR) [3], but the WA polarizability 
still has to be calculated. 

The static polarizability is a ground-state property and hence a functional of 
the ground-state charge density [4]. In principle, one should therefore be able to 
determine the static polarizability from a howledge of the ground-state charge 
density, but since the exact functional dependence of the polarizability on the 
charge density is not !mown this remains a formality. Stoddart and Hanks [SI, 
however, examined the relationship between a perturbative expansion of the kinetic 
and exchange-correlation energy functionals and the electronic response functions. 
This approach makes use of the dependence of the static response functions on 
the ground-state charge density, but is limited by the incomplete knowledge of the 
energy functionals. Another attempt along these lines was made by Car and co- 
workers [6], but again the formalism is limited because of lack of information about 
energy functionals. 

In an alternative approach the inverse dielectric function can be determined 
directly by relating the change in the self-consistent single-electron potential 
in response to small perturbations of the external potential to the perturbing 
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potential [2,7]. Implicit in this approach is the dependence of the dielectric function 
on the ground-state charge density. However, since in this method the effective single- 
particle potential has to be calculated self-consistently for different external potentials, 
it has until now only been applied to a limited number of highly symmetrical situations. 

Within density functional theory it is a simple matter to calculate the single- 
particle states for an effective single-particle Hamiltonian. The ground-state charge 
density in then expressed in terms of the occupied wave functions. It would be 
worthwhile to have an expression for the polarizability in terms of the occupied 
wavefunctions, which can in general be calculated more accurately than the infinite 
number of unoccupied states. 

In this paper we take another look at ways to express the static polarizability and 
derive an expression for the polarizability in terms of the occupied wavefunctions of 
an independent-particle Hamiltonian. The formalism is exact within DIT. 

The organization of the paper is as follows. In section 2 the formal dependence 
of the static polarizability on the ground-state charge density is examined and some 
general properties of x are discussed. Section 3 deals with the case of a single 
electron, and an expression for the polarizability of the hydrogen atom in terms 
of the ground-state charge density is derived. In section 4 an expression for the 
independent-particle polarizability in terms of the occupied wavefunctions in an 
independent-particle formalism is derived. Finally, in section 4, concluding remarks 
are given. 

2. Static polarizability 

The polarizability of the electrons relates a small perturbation in the external potential 
to the resulting change in the electron charge density. For static perturbations we 
have 

6 p ( r )  = / x ( T , T ' ) ~ v & ( T ' )  dr'. (1) 

In a single-particle description of a system of electrons moving in an external 
potential, the single-particle Hamiltonian is usually expressed in terms of an effective 
potential wee(.): 

H = -$V2 + ~ ~ ( r )  

.,e(.) = 4.) + vBn(r) 

(2) 

with 

(3) 

where v,(F) must be determined selfansistently. Fix a solid it would be appropriate 
to use density functional theory [3] with 

4.1 = "Is(.) + (4) 

where wH(r) is the Hartree potential and v,(T) is the exchangecorrelation potential. 
The single-particle eigenstates, $n(r), and eigenenergies, e,, are defined by the 
Hamiltonian H: 

H+n@) = ~ n + n ( ~ ) .  (5) 
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The ground-state charge density, p ( r ) ,  can be expressed as 

OEC 

A T )  = I&(T)I 
n 

and the ground-state energy of the electrons, E,,[p],  as 
r , 

E&] = T[pI + J P(T)vedr) dr + A E J d  = Fbl+ J p ( . ) ~ d . )  d ~ .  0 
Here AE,[p] takes care of doublecounting terms and corrections to the exchange 
mrrelation energy contribution from the independent-particle expression. In the last 
line of (7), F[p] is the energy functional consisting of the kinetic energy, T [ p ] ,  of a 
non-interacting electron gas of density p ,  and the interaction energy of the electrons 
of density p in the approximation which leads to vIC. 

If we assume a nondcgenerate ground state, E [ p ]  is a unique functional of p and 
is a minimum for the correct ground-state charge density. The variation of E [ p ]  with 
respect to fluctuations in p around the ground-state charge density, pu, is therefore 
zero. With each charge density p ,  we associate a unique (up to a constant) external 
potential vm. Now consider a small perturbation in the charge density. Let pg be the 
charge density of the unperturbed system, and p = pu + 6 p  (with 6 p ( r )  dr = 0) 
that of the perturbed system. The fluctuation 6 p  is associated with a unique change, 
6v,, of v,. We therefore have a unique relationship between po and w$ and 
between p and vod = v$ + 671,. The change in E [ p ] ,  to second order in 6 p  [4], is 
given by 

The functional derivatives are determined at p = pw Because of the minimal property 
of E&] for the unperturbed system, the second integral vanishes. Applying the 
minimal property to the perturbed system leads to the condition 

Inverting this equation we get 

Thus [ -62F/6p(r)Sp(r’)I , ] - ’  relates a perturbation in the external potential to the 
linear change in the charge density, and therefore this expression must be equivalent 
to the polarizability of the electrons: 
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Strictly speaking neither [ 6 2 F / 6 p ( r ) 6 p ( r ' ) ]  nor x has an inverse. Both, however, 
are real symmetric matrices and hence Hermitian operators. They can therefore be 
expressed in terms of a complete set of eigenvectors and eigenvalues. Ebr x we have 

R 

Because every external potential (up to a constant) defines a unique charge density, 
for every perturbation bv, there is an associated charge fluctuation. However, since a 
change in potential that is constant over all space cannot alter the charge distribution, 
we have that 

6p  = X ( 6 U U m  + A) = xbv, (13) 
where X is a constant. This implies that x has a null vector, i.e. a t  least one 
of the eigenvalues xR must be zero, and consequently the inverse of x does not 
exist. Because of the unique relationship between the charge density and the 
external potential, for every 6vm with JSu,(r)dr = 0, a unique non-zero charge 
fluctuation can be associated. This implies that for each perturbation &U, = In) 
for which J(rln)dr = 0, a non-zero fluctuation 6p exists and consequently the 
associated eigenvalue x, must be non-zero. Any eigenvector In) of x for which 
J(rln)dr + 0, of which there must be at least one, must therefore belong to the 
null space of x. The inverse of x exists in the space Spanned by functions with the 
property that the integral over all space of the function vanishes. Conversely, since 
&U, = x - l 6 p  the physically meaningful space, from charge conservation, on which 
x-' or, equivalently, -62F/6p(r)6p(r')  should operate, is also Spanned by functions 
of the form J6p(r)dr  = 0. The equivalence of x-' and - 6 2 F / 6 p ( r ) 6 p ( ~ ' )  is thus 
consistent and physically meaningful in this restricted subspace. 

Stability requirements place restrictions on the values of the eigenvalues x-' [4,6]. 
For an arbitrary internal charge fluctuation, since at equilibrium stability it is required 
that 6p = 0, the change in Ee, must be positive, and to second order in 6 p  this is 
given by 

Thus x-' is a non-positive-definite operator in the subspace where it is defined, 

If we expand F [ p ]  we can ~ t e  x-' as 
and the eigenvalues of x-' must hence all be negative; x;' < 0. 

The self-consistent potential is usually expressed in some manageable form, but the 
functional dependence of T[p]  on the charge density, unfortunately, is only !mown in 
a few limiting cases (see section 3). 

When we apply the Hellmann-Feynman theorem [SI to the ground-state energy 
Eg[p] of the independent-particle Hamiltonian 

(16) 
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we have 

hence 

We define the inverse of the independent-particle polarizability, x i ' ,  as 

The inverse polarizability for the system can thus be expressed as 

2m7 

or in a more compact form 

where I is the unit matrix. For a given vy the external potential vm is a unique 
functional of p and th is  dependence has to be taken into acwunt when the functional 
derivative of veT is taken. From (18) it is evident that the independent-particle 
polarizability x;' relates a fluctuation in the charge density to a change in the 
effective single-particle potential Sv,, thus 

6v, = x;'6p 6 p  = xo6veE. (21) 

From perturbation theory the standard expression for xo in terms of 
eigenfunctions and eigenvectors of the independent-particle Hamiltonian is [9] 

where the factor two comes from spin degeneracy and the ni are occupation factors. 
This expression involves an infinite summation over products of occupied and empty 
eigenfunctions, and it is in general a demanding task to compute (22) accurately. 
From (18) it is clear that xu is a functional of the ground-state charge density. In the 
following sections it will be shown that xu and hence x can be expressed in terms of 
the occupied wavefunctions only. 
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3. Polarizability for the hydrogen atom 

In the case of hydrogen we consider a single electron moving in the potential of a 
proton, and in the non-relativistic treatment the energy functional F involves only 
the kinetic energy (i.e. we do not treat it in the density functional formalism). The 
ground-state wavefunction is non-degenerate and hence it is a real function. The 
charge density is given by 

P ( T )  =+Ll(T)&(T) (23) 

where ~ / ) O ( T )  is the ground-state wavefunction. The kinetic energy becomes 

Equation (24) gives an explicit expression for the kinetic energy as a functional of the 
ground-state charge density. From (U), since F T, we now have for the inverse 
of the polarizability 

’Ib our knowledge this is the only known expression of the inverse for the polarizability 
of a system in terms of the ground-state charge density. It is a simple matter to 
show that this is indeed the inverse in the subspace discussed in section 2 If we 
substitute for &(T - T ‘ )  by & ( P ) ~ ( T  - T ‘ ) / & ( T ) ,  and expand S(T - r‘) in tems of 
the eigenvectors of H, we can rewrite equation (25) as 

where we have chosen the eigenfunctions to be real. The polarizability can he witten 
as 

From (26) and (27) we have 

The charge density P ( T )  is exactly the null vector of x-l, as can be seen by operating 
on p ( r )  using (26). Furthermore, Jp(r)dr  = 1, and hence is not an element of the 
subspace discussed in section 2 Thus, if we project out the null space of x-l, the 
inverse of x exists and is given by (25) or (26). 



Polarizabilify pom occupied wavefunctions m39 

4. Polarizability in terms of occupied wavefunctions 

In this scction we choose the eigenfunctions +; of our single-particle Hamiltonian to 
be real. We define the function ti( r,  r') by 

Summing over all Occupied states we have 

Consider the expression 

In an analogous way to the derivation of (28) we find that 

Now + ; ( T ) ~  is a null vector of t ; (r ,r ' ) .  This can easily be proved by rewriting (31) 
as 

and then operating on t , ( r , ~ ' )  with thii expression. The inverse of tx (r , r ' )  will 
only make Sense in the subspace from which this vector has been projected, but 
since J+;(T)*dr # 0 this is consistent with the subspace in which x-' exists. 
The inverse tZ(v , r ' )  is thus well defined in the subspace in which x-' is defined. 
Projecting out the t z ( T , r ' )  also makes sense when one considers that, from second- 
order perturbation theory, the charge fluctuation 6 p  caused by a perturbation in the 
external potential does not contain a term proportional to + ; ( T ) ~ .  

From (29), (30) and (31) it follows that we can write 
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and from (20) we then have that 

Since zly is a functional of the ground-state charge density (35), with xu given by (34) 
is an expression for the static polarizability in terms of the occupied wavefunctions of 
the single particle Hamiltonian. Equation (35) is independent of the approximations 
used to calculate the eigenfunctions. Exchange-correlation effects are included to the 
extent that they are taken into account in the approximations used for zly in the 
single-particle Hamiltonian. The polarizability, as represented in (39, will be exact if 
the single-particle potential zly is exact. A further discussion and an application of 
(35) can be found in [lo]. 

5. Concluding remarks 

In section 2 the dependence of the static polarizability on the groundstate charge 
density was examined. It was shown that the inverse of the polarizability matrix exits 
and has a physically meaningful interpretation in a subspace spanned by functions of 
the form Sap(?)  dv = 0. An expression for the polarizability of the hydrogen atom 
in terms of the ground-state charge density was derived in section 3. Equation (35) 
expresses the static polarizability in terms of the occupied singleparticle states of a 
single-particle Hamiltonian. Thii expression is exact within DFT. An application of 
(35) to a molecular system is in preparation. 

Incidentally, equation (24) shows that the kinetic energy density of the hydrogen 
atom is given by T[v,p] = V p ( r ) .  V p ( T ) / S p ( r ) .  In the semiphenomonological 
Thomas-Fermi approach, the leading term of the kinetic energy density is taken to 
be proportional to p5/3, which is correct for the homogeneous electron gas. This, 
however, bears no resemblance to (24) and it is therefore not surprising that the 
Thomas-Fermi approach is not very successful in describing atomic properties 1111. 
The expressions for the free electron gas and the hydrogen atom must, however, be 
limiting cases of the same functional that describes the ldnetic energy density of an 
independent system of electrons of density p. 
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